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In order to make future satellites both smaller and smarter, more navigation information must be extracted

from simpler, smaller sensors. One of the simplest sensors is an optical or infrared camera. With a camera, a

satellite can track a second satellite located within its field-of-view. This simple measurement is the foundation

of angles-only navigation. By its very nature, angles only navigation cannot determine the relative range to an

object. Even as the dynamics associated with orbital rendezvous and proximity operations unfold, the relative

range will generally remain unobservable. In this paper we confirm that an angles only navigation system

can observe range if small maneuvers can be executed, and we show that the level of accelerometer accuracy

determines how well the range can be observed.
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I. Nomenclature

Accents, subscripts and superscripts

True Value = ō
Estimated Value = ô
Measured Value = �o

Previous Time step Estimate = o−

Updated Estimate = o+

Chaser camera frame = ocam

Chaser body frame = ob

Chaser values = oc

Target values = ot

Cross Product Matrix Form = [ō×]

Errors and noise

Measurement Error (ν) = �o− ō
Residual Error (e) = �o− ô
Misalignment (ε) = vector of small angles

Bias (β ) = vector
Process Noise (w) = continuous white noise

Measurement Noise (η) = continuous white noise

II. Introduction

The purpose of this study is to show how accelerom-
eter accuracy affects the performance of a Kalman fil-
ter processing angles-only measurements during orbital
rendezvous. While angle measurements can be obtained
from other types of sensors (Lidar or Radar for example),
the camera has the additional advantage of being entirely
passive.

By its very nature, an angle measurement contains no
range information. If angle measurements are made to
multiple objects with known locations that lie in differ-
ent directions this limitation can be overcome. When the

angle measurements are made to a single object, such as
during orbital rendezvous, the lack of range information
can become a serious limitation.

Various strategies have been developed to overcome this
limitation. Two of the most successful techniques are
taking “apparent diameter” measurements, and perform-
ing translational maneuvers.1 Both methods have their
disadvantages. Apparent diameter measurements are
range limited based on the resolution of the camera and
require prior knowledge of the satellite being observed.
Translational maneuvers consume fuel and lower the
life of the satellite. In this paper the translational burn
method will be considered.

Lingering Questions on Angles-Only Navigation

Angles-only navigation (AON) has been researched for
use on spacecraft since the days of Gemini,2 and proved
useful for orbital rendezvous during the Apollo years. It
was successfully implemented autonomously on Deep
Space I.3 AON is useful because is does not require
heavy and expensive sensors like radar. Instead, an ex-
pensive radar is replaced by a video camera and occa-
sional maneuvers.

However, there are still serious questions about AON use
during orbital rendezvous. For distances greater than
100km, Gauss’ method may be an option to determine
range.4 However, at closer distances, Gauss’ method
breaks down. This is because whole families of trajecto-
ries will exhibit nearly identical line-of-sight (LOS) mea-
surement histories as seen in figure 1. They only differ
in their range component. If this motion is linearized us-
ing CW equations, then the LOS measurement histories
will truly be identical. Without a unique solution for the
given measurements, the relative state of the chaser will
remain unobservable.

The behavior of Kalman filters when processing LOS
measurements has been analyzed well studied.1, 5 It has
been shown that the component of the covariance ma-
trix parallel to the LOS vector will grow almost with-
out bound unless maneuvers that change future measure-
ments are performed. Within a short time, state estima-
tion can return bogus results (See figure 8).
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Figure 1. A family of relative-motion trajectories exhibiting identical line-of-sight measurement histories.

Observability Burns

In order to estimate range, satellites using AON for or-
bital rendezvous must make maneuvers in order to ob-
serve relative range. As Figure 2 shows, only one range
will satisfy the known change in position δ r resulting
from a known acceleration delivered by the spacecraft’s
thrusters as long as δ r is not parallel to rnominal . The
change in the LOS vector for a given δ r is known as the
observability angle (θ )6 . These LOS measurements are
processed in an EKF for state estimation.

The difference between the actual θ and the calculated θ̂
is a function of accelerometer and image centroiding er-
rors. As shown in Figure 3, if the calculated observability
angle is too small, then the Kalman filter may tend to ig-
nore it, because it falls within noise of the system. Thus,
accelerometer performance may have a tremendous im-
pact on the ability of the navigation filter to estimate rel-
ative range.

Kalman Filter

The Kalman filter was first developed by R.E. Kalman7

and has been improved and expanded over the years to

process all sorts of measurements. A Kalman filter es-
sentially propagates an estimated state (x̄) and the covari-
ance (Px) of that state in real time. When measurements
are made, the estimated state is improved and the size of
the covariance decreases.

When angle measurements are processed in a Kalman
filter, no information can be gleaned parallel to the LOS
vector. Applying the filter in a rendezvous situation with
no observability burns will result in a very long, skinny
covariance ellipse. As a result, extremely large and very
small values will be contained in the same covariance
matrix. Within a short time numerical issues can crop up
during the measurement update portion of the Kalman
filter algorithm.

To help overcome this issue, the Kalman filter will be
reformulated to update the square root of the covari-
ance matrix. This formulation is known as a square-root
Kalman filter, and has the significant advantage of mak-
ing large numbers smaller and small numbers larger—
making the filter much more robust when propagating a
long, skinny covariance ellipse.8 The specific formula-
tion the square root extended Kalman filter (SREKF) is
adapted from Tapley9 (See figure 4).
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III. Methods

A satellite rendezvous simulation created in Mat-
lab/Simulink is used. It includes noise and bias on sen-
sors and actuators. Vehicle dynamics, environmental
models, sensor models, and actuator models already ex-
ists as Simulink blocks. Only the navigation algorithms
was developed for this research.

Essentials include a satellite with three sen-
sors–accelerometers, line-of-sight camera, and star-
camera. Actuators include thrusters and momentum
wheels. This satellite is modeled with familiar Euler
equation rigid-body dynamics and J2 gravity with noise.
The flight software guidance is waypoint driven for trans-

lation and target tracking for attitude. Attitude control is
obtained with a phase-plane controller for thrusters and
a PID controller for momentum Wheels. Translational
control leverages a PD controller for station keeping, and
Clohessy-Wiltshire (CW) equations targeting for trans-
fers. Navigation is detailed in Section III.A.

III.A. Kalman Filter Development

A Square-Root EKF is used for navigation. The oper-
ations of the square-root filter is distinguished from the
standard filter as seen in figure 4. The filter has been for-
mulated to process line-of-sight measurements. The fil-
ter assumes J2 gravitational dynamics and uses onboard
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accelerometers and star-tracker measurements to directly
propagate the states. The filter runs onboard a chaser
spacecraft and will estimate the inertial position and ve-

locity of both the chaser and a target vehicle that it is
tracking. The filter will also estimate bias and misalign-
ment of the accelerometer and cameras.
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Figure 4. Square-Root Extended Kalman Filter (SREKF) and Extended Kalman Filter (EKF) flow charts (See section III.B)
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III.A.1. Filter Design Model

This is the navigation system designer’s ”working
model.” This model accounts for the position and veloc-
ity of the chaser and target vehicles, misalignment and
measurement noise on the accelerometers and the optical
camera, and bias on the accelerometers. It uses process
noise in the vehicle acceleration channel to account for
unmodeled effects like drag and solar pressure.

The only measurements that will be processed in the

Kalman filter directly will be LOS and accelerometer
measurements. Accelerometers will be used to propagate
position and velocity states directly. As a result, the ac-
celerometer measurement noise (ηc) will be treated like
a process noise.

The filter design model can be written as:

˙̄x = f (x̄)+Bw̄
ȳ = h(x̄)+ηcam

(1)

˙̄x =





˙̄rc
˙̄vc
˙̄rt
˙̄vt
˙̄β

˙̄εacc
˙̄εcam





21x1

f (x̄) =





v̄c

g(r̄c)+Tb→I [I3x3 +[ε̄acc×]][�a− β̄ ]
v̄t

g(r̄t)
−β̄/τaccβ
−ε̄acc/τacc

−ε̄cam/τcam





21x1

(2)

g(r̄) =−µ r̄
|r̄|3 −µ J2R2

e
2|r̄|5

�
6(r̄ · n̄)n̄+3r̄−15(īr · n̄)2r̄

�

w̄ =





w̄c

η̄c

w̄t

w̄accβ
w̄acc

w̄cam





18x1

B =





03x3 03x3 03x3 03x3 03x3 03x3

I3x3 −Tb→I [I3x3 +[ε̄acc×]] 03x3 03x3 03x3 03x3

03x3 03x3 03x3 03x3 03x3 03x3

03x3 03x3 I3x3 03x3 03x3 03x3

03x3 03x3 03x3 I3x3 03x3 03x3

03x3 03x3 03x3 03x3 I3x3 03x3

03x3 03x3 03x3 03x3 03x3 I3x3





21x18

The measurement equation is detailed below. See figure
5 for an explanation of the azimuth and elevation angle
values.

h(x̄) =

�
tan(az)
tan(el)

�
=

�
Rcam

z /Rcam
x

Rcam
y /Rcam

x

�
(3)

R̄cam
rel = [I3x3− [ε̄cam×]](TI→b(r̄t − r̄c)− rb

cam) = (4)

[Rcam
x Rcam

y Rcam
z ]T

INERTIAL-TO-BODY TRANSFORMATION MATRIX
The transformation matrix comes directly from the star
camera, which returns a quaternion measurement (�q):

TI→b(q̄) = (5)



q2

0 +q2
1−q2

2−q2
3 2(q1q2−q0q3) 2(q1q3 +q0q2)

2(q1q2 +q0q3) q2
0−q2

1 +q2
2−q2

3 2(q2q3−q0q1)
2(q1q3−q0q2) 2(q2q3 +q0q1) q2

0−q2
1−q2

2 +q2
3





3x3

where

q̄ =





q0

q1

q2

q3





4x1

=

�
cos(θ/2)
ûsin( θ

2 )

�
(6)

û = unit vector defining axis of rotation
θ = angle of rotation in radians
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STATE AND STATE COVARIANCE PROPAGATION
EQUATIONS These are the equations the filter will use
to propagate the estimated states and covariance

˙̄x = f (x̄)
Pi+1 = ΦiPiΦT

i +BQBT δ t
(7)

The strength of the process noise Q is related to the pro-
cess noise w̄ by the relationship:

Qδ (t � − t) = E[w̄(t �)w̄(t)T ] (8)

Where the E operator is the expected value, and δ (t � − t)
is the Dirac delta function.

Q may be represented as a matrix as shown below.

Q =





Qwc 03x3 03x3 03x3 03x3 03x3

03x3 Qηc 03x3 03x3 03x3 03x3

03x3 03x3 Qwt 03x3 03x3 03x3

03x3 03x3 03x3 Qwaccβ 03x3 03x3

03x3 03x3 03x3 03x3 Qwacc 03x3

03x3 03x3 03x3 03x3 03x3 Qwcam





18x18
(9)

The values in these submatrices usually come from the
hardware specification, while Qωc and Qωt are func-
tions of unmodeled accelerations of the chaser and tar-
get which would would include J3+ gravity effects, drag,
solar radiation forces, etc.

The linearization of the dynamics equation is needed to
solve for the transition matrix Φ. The system dynamics
equation ( f (x̄)) is linearized as follows:

F =
∂ f (x̄)

∂ x̄

����
x̄
=

�
∂ f (x̄)
∂ r̄c

∂ f (x̄)
∂ v̄c

∂ f (x̄)
∂ r̄t

∂ f (x̄)
∂ v̄t

∂ f (x̄)
∂ β̄

∂ f (x̄)
∂ ε̄acc

∂ f (x̄)
∂ ε̄cam

�

21x21
(10)

Each element of the above matrix is a column of partials as seen below.

F =





∂ ˙̄rc/∂ r̄c ∂ ˙̄rc/∂ v̄c ∂ ˙̄rc/∂ r̄t ∂ ˙̄rc/∂ v̄t ∂ ˙̄rc/∂ β̄ ∂ ˙̄rc/∂ ε̄acc ∂ ˙̄rc/∂ ε̄cam

∂ ˙̄vc/∂ r̄c ∂ ˙̄vc/∂ v̄c ∂ ˙̄vc/∂ r̄t ∂ ˙̄vc/∂ v̄t ∂ ˙̄vc/∂ β̄ ∂ ˙̄vc/∂ ε̄acc ∂ ˙̄vc/∂ ε̄cam

∂ ˙̄rt/∂ r̄c ∂ ˙̄rt/∂ v̄c ∂ ˙̄rt/∂ r̄t ∂ ˙̄rt/∂ v̄t ∂ ˙̄rt/∂ β̄ ∂ ˙̄rt/∂ ε̄acc ∂ ˙̄rt/∂ ε̄cam

∂ ˙̄vt/∂ r̄c ∂ ˙̄vt/∂ v̄c ∂ ˙̄vt/∂ r̄t ∂ ˙̄vt/∂ v̄t ∂ ˙̄vt/∂ β̄ ∂ ˙̄vt/∂ ε̄acc ∂ ˙̄vt/∂ ε̄cam

∂ ˙̄β/∂ r̄c ∂ ˙̄β/∂ v̄c ∂ ˙̄β/∂ r̄t ∂ ˙̄β/∂ v̄t ∂ ˙̄β/∂ β̄ ∂ ˙̄β/∂ ε̄acc ∂ ˙̄β/∂ ε̄cam

∂ ˙̄εacc/∂ r̄c ∂ ˙̄εacc/∂ v̄c ∂ ˙̄εacc/∂ r̄t ∂ ˙̄εacc/∂ v̄t ∂ ˙̄εacc/∂ β̄ ∂ ˙̄εacc/∂ ε̄acc ∂ ˙̄εacc/∂ ε̄cam

∂ ˙̄εcam/∂ r̄c ∂ ˙̄εcam/∂ v̄c ∂ ˙̄εcam/∂ r̄t ∂ ˙̄εcam/∂ v̄t ∂ ˙̄εcam/∂ β̄ ∂ ˙̄εcam/∂ ε̄acc ∂ ˙̄εcam/∂ ε̄cam





21x21

(11)
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Many of these partial derivatives are zero, resulting in the following.

F =





03x3 ∂ ˙̄rc/∂ v̄c 03x3 03x3 03x3 03x3 03x3

∂ ˙̄vc/∂ r̄c 03x3 03x3 03x3 ∂ ˙̄vc/∂ β̄ ∂ ˙̄vc/∂ ε̄acc 03x3

03x3 03x3 03x3 ∂ ˙̄rt/∂ v̄t 03x3 03x3 03x3

03x3 03x3 ∂ ˙̄vt/∂ r̄t 03x3 03x3 03x3 03x3

03x3 03x3 03x3 03x3 ∂ ˙̄β/∂ β̄ 03x3 03x3

03x3 03x3 03x3 03x3 03x3 ∂ ˙̄εacc/∂ ε̄acc 03x3

03x3 03x3 03x3 03x3 03x3 03x3 ∂ ˙̄εcam/∂ ε̄cam





21x21

(12)

The individual partial derivatives are evaluated as follows:

∂ ˙̄rc/∂ v̄c = I3x3 (13)
∂ ˙̄vc/∂ r̄c = A1(r̄c)+A2(r̄c)+A3(r̄c)

∂ ˙̄vc/∂ β̄ =−Tb→I [I3x3 +[ε̄acc×]]

∂ ˙̄vc/∂ ε̄acc = Tb→I [[β̄×]− [�a×]]
∂ ˙̄rt/∂ v̄t = I3x3

∂ ˙̄vt/∂ r̄t = A1(r̄t)+A2(r̄t)+A3(r̄t)

∂ ˙̄β/∂ β̄ =
−1

τaccβ
I3x3

∂ ˙̄εacc/∂ ε̄acc =
−1
τacc

I3x3

∂ ˙̄εcam/∂ ε̄cam =
−1
τcam

I3x3

where

A1(r̄) =
−µ
|r̄|3

�
I3x3−3īr īTr

�
(14)

A2(r̄) =
−3µJ2R2

e n̄
|r̄|5

�
n̄T I3x3−5(īTr n̄)īTr

�
− 3µJ2R2

e
2|r̄|5

�
I3x3−5īr īTr

�

A3(r̄) =
7.5µJ2R2

e
|r̄|5 ×

�
(īTr n̄)2I3x3−5(īTr n̄)2 īr īTr +

r̄īTr n̄n̄T I3x3

|r̄|
�
I3x3− īr īTr

��

In the Kalman filter the estimated states (x̂) will be used
to evaluate these partial derivatives.

Once F is computed, the transition matrix is given by:

Φ = eFdt = I +Fdt +
F2dt2

2!
+

F3dt3

3!
+ · · · (15)

III.B. State and State Covariance Update Equation

The update equation is where the standard and square-
root Kalman filters differ. A comparison of the two up-
date algorithms may be seen in figure 4.

The standard update equation works well on long
wordlength machines, but can cause the covariance ma-
trix to lose positive definite nature during the update
step when the covariance matrix is ill-conditioned.8 The
square-root Kalman filter update equations are consid-
erably more complex then the standard update equa-
tions, but they improve numerical accuracy and main-
tain the positive definite nature of the covariance ma-
trix. The square root algorithm used in this paper
was adopted from Tapley and Maybeck.8, 9 The ma-
trix square-root was calculated by way of Cholesky de-
composition, which is referred to in figure 4 as “chol.”
Cholesky decomposition results in a lower or upper tri-
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angular matrix where each is the complex transpose of
the other. For the lower triangular case, the result times
its transpose results in the original matrix. Cholesky de-
composition is among the most stable of matrix opera-
tions.10

R = chol(P) (16)

RRT = P (17)

III.B.1. Linearization of Measurement Equation

The linearization of the measurement equation results
in the measurement sensitivity matrix (H), which is re-
quired to solve for the Kalman gain (K).

Note that the H matrix will take the general form:

H =
∂h(x̄)

∂ x̄

����
x̂
=

∂h(x̄)
∂ R̄b

rel

∂ R̄b
rel

∂ x̄

�����
x̂

= (18)

∂h(x̄)
∂ R̄b

rel

�
∂ R̄b

rel
∂ r̄c

∂ R̄b
rel

∂ v̄c

∂ R̄b
rel

∂ r̄t

∂ R̄b
rel

∂ v̄t

∂ R̄b
rel

∂ β̄
∂ R̄b

rel
∂ ε̄acc

∂ R̄b
rel

∂ ε̄cam

�

2x21

The angle measurement is not a function of acceleration
bias (β ), accelerometer misalignment (ε̄acc), or vehicle

velocities. So the measurement sensitivity matrix be-
comes:

H =
∂h(x̄)
∂ R̄b

rel

�
∂ R̄b

rel
∂ r̄c

0 ∂ R̄b
rel

∂ r̄t
0 0 0 ∂ R̄b

rel
∂ ε̄cam

�

2x21

(19)

The individual partials are:

∂h(x̄)
∂ R̄b

rel
=

� −Rz
R2

x
0 1

Rx
−Ry
R2

x

1
Rx

0

�

2x3

∂ R̄b
rel

∂ r̄c
=−[I3x3− [ε̄cam×]]TI→b � (20)

∂ R̄b
rel

∂ r̄t
= [I3x3− [ε̄cam×]]TI→b

∂ R̄b
rel

∂ ε̄cam
= [

�
TI→b(r̄t − r̄c)− rb

cam

�
×]

IV. Model Implementation

The simulation tool of choice is Matlab/Simulink. See
Figure 6 for an example of this simulation. The values of
the variables in the equations in section III are found in
tables 1 through 5. It is important to note that key noise
parameters and initial covariances must be matched as
good as possible to the “real” values in the simulation in
order for the filter to perform as expected.

Figure 6. Example of simulation model implemented in Simulink.

IV.A. Noise and Time Constants

The noise strengths and time constants are the nominal
values. The accelerometer measurement noise on the

chaser was varied in order to produce the results found
in section V.
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Table 1. Process Noise, Measurement Noise, and ECRV time contents

Parameter Description Value in Simulation Value in Filter Units

Qωc
Strength of Process Noise due to
random accelerations on Chaser

0 10−18 km2

s3

Qηc

Strength of Process Noise due to
accelerometer measurement noise

being processed directly in
propagator

10−12 10−12 km2

s3

Qωt
Strength of Process noise due to
random accelerations on Target

0 10−18 km2

s3

Qωaccβ
Strength of Process noise on

accelerometer bias
10−20 10−20 km2

s3

Qωacc
Strength of Process noise on
accelerometer misalignment

0 10−20 rad2

s

Qωcam
Strength of Process noise on

camera misalignment
0 5×10−13 rad2

s

R Variance of Measurement Noise on
Angle Measurements

10−6

�
10−6 0

0 10−6

�
rad2

τaccβ
ECRV time constant for

accelerometer bias
106 106 sec

τacc
ECRV time constant for

accelerometer misalignment
∞ 106 sec

τcam
ECRV time constant for camera

misalignment
∞ 106 sec

IV.B. Initial Conditions

Note that the components of the initial conditions are all
3x1 vectors. The value of the standard deviation in ta-

ble 2 dictates the value of the initial covariance of that
variable.

Table 2. State Initial Condition

State Description Standard Deviation Value in Filter Units

r̄c Chaser Position in ECI Frame 10−2
x
y
z

=




5114.067
−3998.013
−335.012



 km

v̄c Chaser Velocity in ECI Frame 10−5
x
y
z

=




4.8199
6.1714

0.07119



 km/s

r̄t Target Position in ECI Frame 10−2
x
y
z

=




5114.3258
−3997.682
−335.0156



 km

v̄t Target Velocity in ECI Frame 10−5
x
y
z

=




4.81954

6.171718
−.071167



 km/s

β̄ Bias on accelerometers 10−20 0 km/s2

ε̄acc Misalignment on accelerometers 10−10 0 rad
ε̄cam Misalignment on camera 10−4 0 rad
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Table 3. Covariance Initial Conditions

Component of
Covariance

Value Units

Prcrc (10−2)2× I3x3 km2

Pvcvc (10−5)2× I3x3 km2/s2

Prt rt (10−2)2× I3x3 km2

Pvt vt (10−5)2× I3x3 km2/s2

Pββ 10−20× I3x3 km2/s4

Pεaccεacc 10−20× I3x3 rad2

Pεcamεcam 10−8× I3x3 rad2

Table 4. Navigation filter constants

Symbol Definition Constant and Units

µ Gravitation Constant 398600.4415 km3/s2

J2 Second order
gravitation parameter

0.0010826269

Re Radius of the Earth 6378.1367 km
n̄ Constant for

calculations
[0 0 1]

dt Propagation step size 0.25 sec

Table 5. Navigation filter inputs

Symbol Definition Units

�a measured acceleration from
accelerometers (km/s2)

�q measured attitude from
star camera unit quaternion

�y Angle measurements to
Target Satellite unitless 2D vector

Tb→I transformation matrix (body to inertial) See section

V. Analysis and Results

V.A. Observability Maneuvers Performance

In order to judge the effect of accelerometer accuracy on
Kalman filter performance, the simulation was run for
the flight path seen in figure 7. In brief, the satellite per-
forms no maneuvers for the first 500 seconds. After this
it burns positively and negatively in the crosstrack di-
rection successively every 75 seconds. The importance
of these maneuvers is emphasized by examining figures
8 and 9, which shows navigation performance with and
without accelerometers.

The effects of using poor, average, and good accelerom-
eters on navigation performance is shown if figures 10
through 12 and may be contrasted with the “perfect ac-
celerometer” results found in figure 9. These results were
generated with a square-root Kalman filter with all values
defined as seen in section IV, except for the accelerome-
ter accuracies, which are defined in table 6.

A couple of other methods were investigated as well.
The first is to improve state estimation by increasing the

magnitude of the thrust maneuvers so that they are more
easily distinguished from accelerometer noise and error.
The second method is to ignore the accelerometer mea-
surements when a burn is not being performed. These
two cases are shown in figures 13 and 14 for average ac-
celerometers.

The final plot, figure 15, shows results when LN-200
type accelerometers are used. These commercial, off-
the-shelf accelerometers have a acceleration noise vari-
ance of 3× 10−13 km2/s4, slightly better than the av-
erage case, and a bias with a standard deviation of
3× 10−6 km/s2, much worse than the 10−20 km/s2 used
for all the other runs.11

Variance of Acceleration
Measurement

Perfect 0km2/s4

Good 10−14 km2/s4

Average 10−12 km2/s4

Poor 10−10 km2/s4

Table 6. Poor, average, and good accelerometers specifications
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Figure 7. Flight path for accelerometer comparison
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Figure 8. Relative position covariance and errors with no maneuvers
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Figure 9. Relative position covariance and errors with perfect accelerometers
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Figure 10. Relative position covariance and errors with good accelerometers
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Figure 11. Relative position covariance and errors with average accelerometers
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Figure 12. Relative position covariance and errors with poor accelerometers
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Figure 13. Relative Position Covariance and errors with higher thrust levels
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Figure 14. Relative Position Covariance and errors with active accelerometers only when thrusting
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Figure 15. Relative Position Covariance and errors with LN-200 type accelerometers

VI. Conclusions

As expected, the results show a correlation between nav-
igation performance and accelerometer accuracy. If the
acceleration level of the maneuvers are not overwhelmed
by the measurement noise then the filter can estimate
range. If the acceleration levels are overwhelmed by the
the noise, then the filter will fail to estimate the relative
state accurately (See figure 12).

It is common to improve filter performance by process-
ing the accelerometer measurements only when a burn

is being commanded. Increasing the magnitude of the
thrust is also effective at improving navigation perfor-
mance. Comparing figures11,13 and 14 reveals that pro-
cessing accelerometer data only when maneuvers are be-
ing executed is slightly more effective at improving state
estimation then increasing burn strength and both tech-
niques are better then the original case (figure 11).

The run with LN-200 type accelerometers (figure 15)
also converges to the correct state despite the increased
bias on the accelerometers.

These results are preliminary and further testing and
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investigation will be required before the effects of ac-
celerometer error and processing on state estimation can
be fully quantified. However, these results indicate that a
camera combined with average commercial off-the-shelf
accelerometers and occasional maneuvers may be able to
estimate the relative state accurately enough for proxim-
ity operations, and deserves further investigation.
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